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Abstract

This project involving measuring the similarity between various games according to a common
property all games have, the moves during play. The main objective of this project is to
determine whether a distance metric based purely on the types of moves made during two
games is possible and to implement said metric. During several experiments, it was discovered
that in order to make the metric reliable, it is not enough to compare just the types of the
moves. This is due to the fact that there are several games that share the same move types but
are still far from being the same. Therefore improvements were made to the implementation,
such as incorporating elements from game descriptions in the form of game concepts which
resulted in a more robust metric.
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1 Introduction

Over the centuries, people from different parts
of the world shared the habit of playing board
games. The first known board game, Senet,
dates back to 3,500 BC and was created in
Egypt. These games are still popular in con-
temporary times among individuals, providing
not only entertainment but also influencing the
way people in different societies think. For in-
stance, chess is used in many analogies to de-
scribe strategic actions in politics and in the cor-
porate environment. There are a plethora of
types of board games and they are played in
many different ways and rules. Some popular
games, such as Draughts, have variations across
countries, with slightly different rules. Accord-
ing to previous research, board games are re-
sponsible for the similarities between cultures
around the world. They affect people’s behav-
iors, ethics, and traditions, which highlights the
importance of measuring the similarity between
board games. To measure the similarity between
games is also important for the classification of
games, detection of plagiarism and novelty of
rule sets.

1.1 Motivation

Given the aforementioned reasons, it is useful to
discover a way to measure game similarity. How-
ever, it is difficult to invent a reliable similarity
metric for the general category of board games.
Games come in many different types, categories
and are played in many different ways, thus the
possibility that any two given games can be rep-
resented in a format that allows direct compari-
son of their internal states is rare. Nevertheless,
the most essential property that all games share
is the moves during playing them. Hence, by

using this property we are able to implement a
distance metric to measure the distance between
two games, i.e. how similar or dissimilar they
are. As a consequence, the problem which is
arising from the above and the main perspective
of our project is the definition of a reliable dis-
tance metric that measures the distance between
two games and hence, their similarity.

1.2 Distance Metrics

Distance metrics are a fundamental part of sev-
eral machine learning algorithms and they are
used in both supervised and unsupervised learn-
ing, generally to calculate data points. A reli-
able distance metric improves the performance
of a machine learning model whether that’s for
classification tasks or clustering. Generally, it is
challenging to devise a reliable distance metric
that operates for a general case of games, thus
we intend to implement such a distance metric
that is supported with board games and more
specifically with Ludii General game system[4].
In our approach, to measure how similar or dis-
similar several games are, we are going to use dis-
tance metrics and more precisely moved-based
distance metrics. In particular, moved-based
distance metrics are defined as the distance met-
rics that measures the similarity of games ac-
cording to their moves.

What does it mean for two games to be simi-
lar? Every game has its own board, rules, moves,
and sequences of moves. Since it is difficult to
answer the previous question - and there are con-
tradictions between the possible answers - we are
interested in finding out if it is possible to deter-
mine the similarity of the two games analogously
their moves distance. Therefore, the implemen-
tation of our distance metric is about finding how
close or not are the moves or sequences of moves
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of two games.
To define such a distance metric mentioned be-

fore, we are using the Ludii General Game Sys-
tem (https://ludii.games/). ”Ludii” is designed
to play, evaluate, design, compare and optimize
a variety of games, including board games (Fig-
ure 2). In this system, the games are described
by ludemes, which are units of game-related in-
formation, including moves and move concepts.

We define the distance of our distance metric,
consequently, and the similarity as follows:

Distance = 1− Similarity (1)

Specifically, the implemented distance metric
will be used to estimate the similarity between
games according to their moves (or sequences of
moves). The values of both similarity and dis-
tance are between 0 and 1. If two games are iden-
tical, the distance between them will be close to
0 and the similarity close to 1. Analogously, the
distance of two completely different games will
converge to 1, and the similarity to 0.

1.3 Social Impact

Researchers over the years tried to discover the
origins of games according to literary sources
and archaeological findings. It is very often dif-
ficult to find these type of resources and time-
consuming process, thus by using distance met-
rics, such as moved-based distance metrics, it
is possible to construct family trees of many
games according to their rules or moves similar-
ities. By exploring these trees, we can detect
similarities amongst games and conclude that
there was a cultural exchange or similar social
background [3]. In any case, it helps us to de-
tect much faster and with reliability the origin
of games and understand properly the human
history. Additionally, another significant impact

of the development of reliable distance metric
for measuring the distance, and thus the simi-
larity of two games is the recommendations of
the computer-generated games. A user play-
ing several games could receive recommenda-
tions based on their preferable games by compar-
ing those games moves and sequences of moves.
This could be an inspiration for the game devel-
opment industry by creating games with simi-
lar moves to those of the most popular games.
There are many other parameters to be consid-
ered for the game development, however, the
moves during the game would be such an in-
teresting parameter mainly for the board game
development. For example, there are many ge-
netically evolved ludeme based games research[1]
that became popular and successful according to
the ”Evolutionary Game Design” research[2].

1.4 Research Questions

Our project aims to answer some research ques-
tions about the similarity of the games. The
main goal of the project is to implement a move-
based distance metric for a variety of board
games to answer the following questions:

• What does it mean for a board game to be
similar or different?

• Is it possible to provide sufficient insights to
measure the underlying difference between
two games, based on the observed move con-
cepts during the trials, combined with the
previously named game concepts?

• Are the designed move-based distance met-
rics faster and more reliable in contrast with
the already existed distance metrics?
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2 Concepts & Approaches

2.1 Previous Approaches

The measurement of the distance between games
has been explored by previous researches, which
mainly adopted approaches involving concepts
borrowed from Biology, namely the genotype
and the phenotype approaches.

In our context, the genotype approach focuses
on the ludemes, that is, on the units of game-
related information. Specifically, it refers to the
characteristics and encoding of a given game,
and the underlying graph representation of the
game’s board (Browne, 2008)[5]. An application
of the genotype approach is given by building
labelled trees of the game’s rules and comparing
the rules using the Levenshtein distance.

The phenotype approach focuses mainly on
the way the game is played, according to its
rules to detect the game categories. To clas-
sify the different games, this type of approach
uses several quality measures, such as the aver-
age game length and the player’s decisions dur-
ing the games.

One research conducted by a group last year
[7] proposed an experimental setup in which they
applied a variety set of distance and similarity
metrics to games present in the Digital Ludeme
Project database. Furthermore, different metrics
applied at the descriptive level and play-out level
of a game separately. In particular, they show
that the genotype metrics proposed are able to
identify communities of closely related games.
Also, they used the Bag of Words approach to
producing a phylogenetic tree that resembles the
cultural evolutionary model of some games (e.g.
Mancala games). They proved that the pheno-
type measures demonstrate to be reflective of the
game’s features provided to them and produced

very diverging trees and measures depending on
the statistics used to aggregate features.

In terms of their approach, they focused on the
genotype and phenotype distance. Firstly, for
the genotype distance, they used three different
approaches and variations of those. They are the
following:

1. Ludeme Edit Distance

2. Board Graph Similarity

3. Bag of Words approach

The Ludeme Edit Distance adapts the Lev-
enshtein string distance to Ludii, that is, it
measures the number of ludemes that have to
be inserted, deleted and/or edited so that one
given game can be transformed into another.
This approach was then adapted to a Tree Edit
Distance, given the tree-like structures of the
ludemes.

The Board Graph Similarity attempts to de-
termine a distance metric for comparing two
graphs, aiming at measuring the similarity be-
tween two given game boards. It considers undi-
rected graph G = (V,E), in which E is the set
of edges, while V is the set of vertices. Then, it
considers operations of the graph edit distance
(GED), which are:

• Inserting

• Deleting

• Substitute

However, since the problem is NP-complete,
the edit distance algorithm used has an expo-
nential computational complexity when it comes
to the graph’s number of vertices. Therefore, a
greedy algorithm and some heuristics were addi-
tionally used in the problem.
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The other genotype approach involved the use
of Basic Frequencies Bag of Words and TFIDF
Bag of Words. The former approach takes a
game’s ludemic description to be equivalent to
a text document and examines the probability
or frequencies distributions of the words in dif-
ferent games, not considering the order or rela-
tionship between words. In the other case, it im-
plements the term frequency-inverse document
frequency (TFIDF) methodology, in which more
importance is given to words that are not greatly
shared between games.

Secondly, two approaches were explored based
on the phenotype distance. Both of them use the
Agents of Ludii to play the games several times
and extract information from the course of these
games to calculate similarities.

1. Measuring correlations among time series of
different games

2. Manhattan distance of different Features

Finally, they tried two broadly different ap-
proaches focusing on the rules and equipment,
and the playout characteristics of the games re-
spectively. It seems that Phenotype distances
between games in particular described a very dif-
ferent topology of resemblance over the games
than the one that would be expected to arise
from resemblance in terms of historical evolu-
tion, as could be seen by focusing on the well
studied subset of the mancala family of games.
Genotype distances were more effective at cap-
turing historical similarity of games.

An example of phenotype approach used by a
previous research group (Kirill et al., 2021)[8] is
to use the so-called Play Trace Distance Metric,
which captures how a game is played by using
the play traces. A play trace of a game is a list
of moves done during a play out. The research

also used Tree Edit Distance Metric, comparing
games through the calculation of the distance
between the game trees generated by two given
games. In both approaches, labelling algorithms
were used, enabling game comparisons by storing
information inside the phonetic structures that
are generated. The research showed that using
distance metrics that already exists on generated
phonetic structures of two given games is a viable
way for calculating distance metric.

2.2 Approach

In our approach, the main goal was to try to
move away from the usual way of comparing
games. The previous methods mainly used the
game descriptions and rules themselves as a base
for comparison as mentioned before, but they did
not take into account the other common thing
that is shared between all games, that is, the
moves performed while playing the games. Mak-
ing moves is an integral part of all board games
and it might be a good way to find differences
and similarities between them. Another benefit
of this approach is that it is a fairly simple way
to compare the games, requiring no intricate al-
gorithms. In this research, we mainly focused
on methods using the Move Concepts, that is,
on a phenotype framework. However, there was
also a combination of N-Grams and Game Con-
cepts in one of the approaches used to measure
the distance between games. In this case, both
genotype and phenotype frameworks were used,
through N-Grams and Game Concepts, respec-
tively.

In Ludii, all the moves are recorded as they
are played and are given a number that indicates
the type of the move. These are called move
concepts and this is what our approach is based
on. We have implemented multiple, iteratively
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improved versions of the metric and these are
explained in detail in section 3.

2.3 Concepts

2.3.1 Ludii

The Ludii general game system, part of the Dig-
ital Ludeme Project (DLP), is a software that
enables playing, comparing, evaluating, design-
ing and optimising a variety of games. Under
the DLP project, which is funded by the Euro-
pean Research Council (ERC), the software is in-
tended to be used to model different traditional
strategy games, aiming to model a representa-
tive sample of 1,000 strategy games in the Ludii
Game Database. Ludii provides a platform en-
compassing a range of game design services, in-
cluding automated game design, game optimi-
sation and historical game reconstruction. The
latter, in particular, aims at performing recon-
struction of historical games using partial or un-
reliable information, which includes material ev-
idence such as partial game boards and pieces
[4].

The idea behind Ludii is the so-called ludemic
approach, which takes into account the atomic
constituents of games, describing key concepts
related to games. Ludemes are units of game-
related information, which have a tree structure
representation of the game-related concepts. Be-
low is an example of the game Tic-Tac-Toe rep-
resented in a ludemic form.

(game "Tic-Tac-Toe"

(players 2)

(equipment {

(board (square 3))

(piece "Nought" P1)

(piece "Cross" P2)

})

(rules

(play (to (empty)))

(end (if (line 3) (result Mover Win)))

)

)

2.3.2 Games in Ludii

In Ludii, a game can be represented by a 4 −
tuple =< Players,Mode,Equipment,
Rules >.

1. Players: Set of k players.

2. Mode: Type of the game (alternating, si-
multaneous and real time).

3. Equipment:

• Containers: Description of the main
board.

• Components: Each described by a
ludeme piece, with its name, owner and
how it can move in the board.

4. Rules: Operations of the game, split in
start, play and end.

2.4 Game Concepts

Ludii contains 5231 different game concepts.
These concepts are terms that describe an idea
related to a given game and encompass some-
thing useful about it. They can be accessed as a
Java BitSet using the Game-objects and are of
heterogeneous value types, i.e. boolean, integer,
etc. A game concept is a type of static concept
that is present in Ludii. The concepts can be
described by the following taxonomy [6]:

1As of June 23, 2021
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1. Properties: General properties of the
game.

2. Equipment: Equipment for playing the
game.

3. Rules: Rules of the game.

4. Metrics: Metrics.

5. Math: Mathematics.

6. Visual: Important visual aspects.

7. Implementation: Internal implementa-
tion details, e.g. for performance predic-
tions.

2.4.1 Playing in Ludii

Within Ludii, the process of playing a game can
be described in a hierarchical fashion:

• Action: Atomic actions; when applied,
modify a single property of the game state.

• Move: Sequence of actions.

• Turn: Sequence of moves by the same
player.

• Trial: Sequence of turns.

Therefore, one Trial is an instance of exactly
one played game, consisting of several turns.

2.4.2 Move Concepts

Every move has multiple binary move concepts,
which can be queried throughout a function
Ludii provides. These move concepts differen-
tiate between the different types of moves that
can be made in a game. For example, placing
a new piece on the board is a different kind of

move than pushing a piece to another spot on
the board. These distinctions help us compare
the games.

3 Methodology

To assess the move-based distance between
games, we have to define a distance measurement
returning a distance d ∈ [0, 1] which estimates
the dissimilarity of two games. Hence d = 0 indi-
cates that both games are identical, while d = 1
means they are totally different. Note that the
meaning of these estimates d will be explained
later on in this report.

Our main interest is to implement a moved-
based distance metric, which will focus on the
moves made while playing the games repeatedly.
Then the algorithm can evaluate the resulting
move concepts in the trials. During the project,
we noticed that some scenarios exist, where esti-
mating a distance based only on move concepts
can lead to extremely small distances d. There-
fore, we decided to use the general game concepts
for our more advanced approaches too.

One important aspect to keep in mind while
designing the algorithm is that speed will be crit-
ical, because ultimately it will be employed to
compare many games at once. As many random
trials and thus a long runtime can be expected,
we conclusively divided the data generation task
from the actual distance metrics. Both parts of
the methodology will be discussed now.

3.1 Data Generation

The data generation task is concerned with sim-
ulating a big, given number n of trials of a list
of games within Ludii. For the simulation the
user needs to be able to specify an AI, which

8



will play the games automatically. Through-
out each trial, the corresponding move concepts
can be requested from Ludii as a java Bit-
Set. Finally, these sequences of BitSets will be
stored in Distance/log/{game}/{ai}/ as comma-
separated values (CSV) files. Here {game} and
{ai} are placeholders for the name of the game
as well as the employed AI respectively.

Optionally, it is possible to store the trials
themselves to file, such that they can be replayed
using Ludii’s graphical user interface. This is
solely meant for testing purposes. Hence, this is
optional.

In algorithm 1 the general procedure of the
implementation is represented. The pseudocode
is a bit simplified, because statements used for
debugging and saving optional data other than
the move concepts are omitted.

3.2 Metrics

The second part of the methodology is con-
cerned with constructing and implementing dis-
tance metrics, which have to return the distance
estimate d as defined in the beginning. These
have to be computed by assessing the move con-
cepts throughout the simulated trials. The ideas
behind them as well as details about the code
will be clarified in the following subsections. All
implemented approaches implement the inter-
face DistanceMetric, which is already defined
in Ludii.

3.2.1 Occurrence of Move Concepts

Our initial idea is solely based on the occurrences
of individual move concepts. Hence, we create a
BitSet indicating whether a move concept arises
for each game to evaluate. Afterwards, comput-
ing the degree of overlap between BitSets of dif-

Algorithm 1 Trial Simulation (Simula-
torApp.java)

1: function trialRun(game, ai, numTrials)
2: Initialize trial for game
3: Initialize context for game and trial

4: for i=0 to numTrials-1 do
5: Start game with context

6: for p=1 to #players in game do
7: Initialize AI for game

8: while trial not over do
9: execute a single move

10: Initialize moveConceptsList

11: for move in trial.moves do
12: Add move to moveConceptsList

13: Close all AI’s for game
14: Initialize (CSV) file according to

section 3.1
15: Initialize writer for file
16: for set in moveConceptsList do
17: Write set as String

18: Close writer

9



ferent games in range 0...1 results in a first sen-
sible estimate.

More formally, let C be the total number of
concept enums defined in Concept.java. More-
over, let g be an arbitrary game in Ludii with
corresponding trials tg,1, ..., tg,n. Then, the Bit-
Set Mg can be determined from the trials:

Mg = {m1,m2, ...,mC} ∀g

mi =

{
1, if ∃j ∈ 1, ..., n : #mtg,j ≥ 1

0, otherwise
∀i

(2)

In eq. (2) #mtg,j indicates the number of oc-
curences of move concept m in one of the n
games’ trials. The next step is to compute d:

d = 1− |Mg ∩Mh|
|Mg ∪Mh|

∀games g, h (3)

Algorithm 2 contains pseudocode of the ma-
jor functions in MoveConceptOverlap.java. In
order to reduce the computation time to its
minimum, we have included a private attribute
moveConceptsByGame of type HashMap, which
allows to store the data per game. Thus, the
CSV files only need to be read once, when com-
paring a game the first time. For every other
comparison, the BitSet will be re-used. Hence,
the time needed is minimized.

3.2.2 Frequency of Move Concepts

The second approach aimed to consider the fre-
quencies of individual concepts, rather than eval-
uating boolean indicator variables. Thus, storing
a BitSet, which denotes whether a move concept
has occurred is not sufficient anymore. This issue
can be resolved by applying HashMaps with in-
teger keys and decimal values. These HashMaps

Algorithm 2 Overlap of occurring Move Con-
cepts (MoveConceptOverlap.java)

function distance(gameA, gameB)
2: moveConceptsA:=

getMoveConcepts(gameA)

moveConceptsB:=
getMoveConcepts(gameB)

4: Return estimate d wrapped as Score ob-
ject by assessing both BitSets

function overlap(moveConceptsA,
moveConceptsB)

Initialize intersection to
moveConceptsA AND moveConceptsB

Initialize union to moveConceptsA OR
moveConceptsB

Return d as defined in eq. (3)

function getMoveConcepts(game)
if HashMap this.moveConceptsByGame

contains BitSet for game then
return the BitSet

Initialize moveConcepts as empty BitSet
Initialize folder containing all the CSV

files of game
for csv in folder.listFiles() being a

file ending with ”.csv” do
Initialize reader

line := ””
while next line 6= null do

if line not empty then
Split line by delimiter
Parse each substring to int
Set Bits in moveConcepts

Close reader

Put moveConcepts in
this.moveConceptsByGame

Return moveConcepts
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can be seen as a sparse representation of high
dimensional frequency vectors.

Due to the sparseness and high dimensional
vector space of the vectors, we planned to utilize
the cosine similarity measure. This firstly re-
sults in a low complexity of computation, as only
non-zero frequencies need to be considered. Sec-
ondly, frequencies being zero for a single game
will be prevented from dominating the distance
estimates, which would be the case with many
other measures, i.e. euclidean distance. Another
advantage of this measure in combination with
non-negative frequency vectors is that its out-
come is neatly bounded in [0, 1]. Therefore, we
conclusively decided to apply the cosine similar-
ity measure.

To describe the approach more precisely, let
C be the number of concepts defined and g be
an arbitrary game in Ludii with corresponding
trials tg,1, ..., tg,n. For each trial let Mg,j,l =
{m1, ...,mC} be the move concept sets for trials
j ∈ {1, ..., n} and trial length l. Then the sparse
frequencies Fg over all trials can be calculated as
in eq. (4).

Fg = {f1, f2, ..., fC} ∀g

fi =

∑n
j=1

∑
M∈tg,j :mi=1 1∑n

j=1

∑
M∈tg,j 1

∀i
(4)

Eq. (5) expresses the formula for the estimate
d to return based on the cosine similarity.

d = 1− cos(θ)

= 1− Fg · Fh

||Fg|| ||Fh||

= 1−
∑C

i=1 Fg,iFh,i√∑C
i=1 F

2
g,i

√∑C
i=1 F

2
h,i

∀games g, h

(5)

Algorithm 3 contains the pseudocode of the
implementation. In order to reduce the compu-
tation time the same trick as in algorithm 2 is
reused. Hence, it is not displayed again.

3.3 Sequences of Move Concepts

Next to the frequencies of move concepts another
important property of the trials, which has not
been yet evaluated, is the order of moves. Hence,
we can assess sequences of concepts by creating
n-grams per individual trial.

An easy initial way to store these would
be a two-dimensional list of BitSets, i.e.
ArrayList<ArrayList<BitSet>> in java. On
the one hand, this approach is not particularly
space-efficient, because each BitSets is stored up
to n times and we need to store the n-grams
themselves. But on the other hand, it is possible
to fine-tune the data structure to the designed
algorithm.

Based on the n-grams, different methods for
comparing them were developed in past years.
One promising approach was proposed by Kon-
drak [9]. It defines n-gram similarity/distance
recursively equivalent to the recursive definition
of the standard levenshtein edit distance. The
issue remaining with an approach designed to
compare two strings is that our n-grams consist
of BitSets and there are multiple trials per game.
Comparing all the trials would increase compu-
tation time exponentially.

Thus, we started with a metric that utilizes
frequencies of n-grams. This allows us to capture
both, frequencies and sequences, without suffer-
ing the loss of speed. Moreover, it allows mini-
mizing the storage complexity too. It is possible
to store a value pair of an integer and decimal
number. The integer is the hashed value of the
BitSet n-gram, which serves as key for the dec-
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Algorithm 3 Frequencies of Move Concepts
(MoveConceptFrequenciesCosineSimilarity.java)

function distance(gameA, gameB)
frequenciesA:=

getMoveConceptFrequencies(gameA)

3: frequenciesB:=
getMoveConceptFrequencies(gameB)

Return estimate d wrapped as Score ob-
ject by calling 1.0 - cosineSimilarity

function cosineSimilarity(fA, fB)
nominator := dotProduct(fA, fB)

Initialize denominator as product of both
norms

Return nominator / denominator

function dotProduct(fA, fB)
ret := 0.0
for key, value in entry set of fA do

d:= value multiplied by
fb.getOrDefault(key, 0.0)

ret = ret + d

Return ret

function norm(f)
ret := 0.0;
for d in values of f do

ret = ret + d*d

Return square root of ret

function getMoveConceptFrequen-
cies(game)

. As defined in algorithm 2, but
returning a HashMap<Integer, Double> of
frequencies

imal frequency. Therefore a HashMap will be
employed for storage purposes.

To estimate the final distance between two
(very) sparse frequency vectors, we once again
employed the cosine similarity measure.

More formally, let g be an arbitrary game
with trials tg,1, ..., tg,n. Furthermore, let Gg,j =
{Gg,j,1, ..., Gg,j,l−N+1} be the n-grams for trials
j ∈ 1, ..., n, trial length l, and n-gram length N .
Then, the frequencies Fg for all CN possible n-
grams for game g can be expressed as follows:

Fg = {f1, f2, ..., fCN } ∀g

fi =

∑n
j=1

∑
G∈Gg,j :hash(G)=i 1∑n

j=1

∑
G∈Gg,j

1
∀i

(6)

To estimate d using the cosine similarity mea-
sure eq. (5) can be reused. Details about the im-
plementation can be found in algorithm 4 and al-
gorithm 5. Note that in getNGrams(game) lines
will be skipped, if they are the n-th consecutive
empty line. This is done because most games
consist of a substantial part of moves having
no concepts assigned. This can lower the dis-
tance score artificially, as these ”empty” moves
are shared between games, without any notable
corresponding action performed by the players.
Partially empty n-grams are not discarded, as
they often indicate the end of a trial and thus
hold valuable information.

3.4 Game Concepts

Throughout the project it became visible that
some games cannot be separated solely by se-
quences of move concepts, i.e. Go and Hex, even
though for most games sound, up to near per-
fect (Knight Moves games). These results will be
presented and discussed later on. Next to moves,
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Algorithm 4 Frequencies of N-Grams 1
(MoveConceptNGramCosineSimilarity.java)

function distance(gameA, gameB)
frequenciesA:= getNGrams(gameA)

frequenciesB:= getNGrams(gameB)

4: Return estimate d wrapped as Score ob-
ject by calling 1.0 - cosineSimilarity

function cosineSimilarity(fA, fB)
nominator := dotProduct(fA, fB)

Initialize denominator as product of both
norms

Return nominator / denominator

function dotProduct(fA, fB)
ret := 0.0
for key, value in entry set of fA do

d:= value multiplied by
fb.getOrDefault(key, 0.0)

ret = ret + d

Return ret

function norm(f)
ret := 0.0;
for d in values of f do

ret = ret + d*d

Return square root of ret

Algorithm 5 Frequencies of N-Grams 2
(MoveConceptFrequenciesCosineSimilarity.java)

function getNGrams(game)
if HashMap this.nGramFrequencies

contains frequencies for game then
return the frequencies

Initialize frequencies as HashMap
5: Initialize counter as HashMap

count := 0
Initialize folder containing all the CSV

files of game
for csv in folder.listFiles() being

a file ending with ”.csv” do
Initialize nGram as LinkedList

10: i := 0
Initialize reader

line := ””
while next line 6= null do

if line is this.n-th consecutive
empty line then

15: Continue
If i≥this.n: nGram.remove(0)
Add BitSet from line to nGram

i++
if i ≥ this.n then

20: hash := nGram.hashCode()

Increase counter at key hash

count++

Close reader

for key, value in entry set of counter
do

25: Put (key, value/count) as entry in
frequencies

Put frequencies in
this.nGramFrequencies

Return frequencies
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there is another property, which all games share,
at least in the Ludii project. Every game object
has boolean concepts, which can be calculated
and retrieved in BitSet form. Thus, comparing
the game concept sets is achievable as described
in section 3.2.1 and the pseudocode can be found
in algorithm 6.

This metric has no problems with computing
thousands of estimates at once, as it does not
read from CSV files. Instead, java’s BitSets are
evaluated, which are pre-computed in the game
object. Moreover, BitSets are designed to per-
form very fast when applying logical operators
such as the logical ”and” as well as logical ”or”.
Both can be found in the function overlap.

Algorithm 6 Game Concepts (GameCon-
ceptsOverlap.java)

function distance(gameA, gameB)
booleanConceptsA:= boolean concepts

of gameA
booleanConceptsB:= boolean concepts

of gameB
Return estimate d wrapped as Score ob-

ject by assessing both BitSets

function overlap(conceptsA, conceptsB)
Initialize intersection to conceptsA

AND conceptsB

Initialize union to conceptsA OR
conceptsB

Return 1.0 - (|intersection|/|union|)

3.5 Combining it all

To conclude our approaches, we designed an-
other metric combining sequences and frequen-
cies of move concepts with game concepts. The

metric has two distance metric attributes, one
as lined out in section 3.3, the other metric is
introduced in section 3.4. Furthermore both
can be weighted by a decimal weight attribute
wi ∈ [0, 1], i = 1, 2 with constraint w1 +w2 = 1.
This yields a fine-tunable estimator.

Algorithm 7 Combined Metric (CombinedCon-
cepts.java)

function distance(gameA, gameB)
Initialize score1 by calling distance of

first metric
Initialize score2 by calling distance of

second metric
Return w1*score1 + w2*score2

wrapped as Score object

4 Experiments & Results

4.1 Experiments

The experiments were conducted with three
different groups of games, Benchmark games,
Knight Moves games and Draught games, each
to assess different aspects of the distances be-
tween those games.

In the experimentation, a total of 1,000 tri-
als were conducted using random AI for each
game and the results were computed. To check
whether the given amount of simulations was
enough to give meaningful results, the same pro-
cess was conducted again and then the results
were compared to the previous ones, both sets
of results were added to a symmetric matrix, for
the purposes of comparison. The difference in
the results computed on both procedures were
zero, meaning the 1,000 trials were sufficient to
compute the results. Then, the distances be-
tween the games were measured using different
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approaches described in the methodology.

The group of benchmark games was created
to encompass games from different categories,
played in diverse geographical locations. The tri-
als conducted on this group involved 18 games,
including the widely known Tic-Tac-Toe and
Chess. As expected, given the different types of
games included in this group, the results showed
there were instances of games far apart from each
other, as well as those with medium distances
and also games that were very similar, i.e., small
distance between them.

To assess the distance between games of the
same category, a group of Draught games was
created, which included 26 variations of Draught
games.

The third group of games tested was the
Knight Moves games, which are the same games
but computed using different ludemes. This
game is basically a chess game in which all the
pieces are knights. The trials on this group in-
volved 20 Knight Moves games.

All the tables shown in the results section are
reduced tables, meaning that they do not include
the whole games of the category involved, only
the more relevant results. The full tables are in
the appendix section.

4.2 First Approach: Computing the
overlap of the bit sets

The first approach of our project for the compar-
ison of the game distance, therefore for the sim-
ilarity, was to compare the overlap of the move
concepts between the games as mentioned in sec-
tion 3.

The following figure illustrates the move-
distance between Draughts Games by using the
overlap of their move concepts.

Figure 1: Draughts Games Move Concept Over-
lap

4.3 Second Approach: frequency and
cosine similarity of the move con-
cepts

This approach was tested with the three dif-
ferent categories of games. First, with the 18
Benchmark Games provided by Ludii. Subse-
quently was tested on the whole Draughts cate-
gory, which includes 26 games, with similar con-
cepts as the are all leaping games. And finally
with the Knight Moves games, which are 20 tests
games with the same moves, basically a Chess
game with only knights as pieces, but with dif-
ferent ludemes.

Figure 2: Benchmark Games Move Frequency
distance
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In the table in the figure 2, which contains
some of the more relevant results of the Bench-
mark Games analysis, it is possible to see that
there are very different relations between games,
with games that are very far apart, games in
medium-range, and very close games. A good
example of games being very distant are Chess
and Tic-Tac-Toe, since this metric is only based
in moves, these two games are completely far
apart since they do not share one single type of
move, in Tic-Tac-Toe it is only possible to add
pieces to the board, in Chess pieces are already
in the board and they change positions.

In games of medium-range, there are examples
such as Chess and English Draughts which have
some similarities but of course, have many dif-
ferences. These games are similar in some types
of moves, such as captures and the fact that the
pieces are on the board at the beginning of the
game and the pieces are moved from one point
to another, but they are also different in terms of
the leaping movements of the Draughts and the
many different types of moves that chess has.

Finally, it is possible to see results of games
that with this specific metric of only moves, are
very similar, an example of this are the games
Hex and Go, the goals of these games are very
different, and the way of attacking the game is
also distant, but in terms of only and only the
moves, both are an empty board where on each
turn a player adds one piece (and in the case of
Go occasionally capture an enemy piece which
explains why the distance it is not exactly d = 0)
which explains the reason of why are these game
so close with this metric.

The table in the figure 3 evaluates with the
move frequency approach the Draught Games
category.

As we see the results are much closer com-
pared to the Benchmark Games. This of course

Figure 3: Draughts Games Move Frequency Dis-
tance

makes sense since every game is inside the same
category. As mentioned before the largest dis-
tance was at most d = 0.4001. And the average
distance of the whole matrix of move frequency
which included the 28 Draughts was d = 0.0581

At last, the approach was tested on the previ-
ously mentioned 20 Knight Moves Games.

Figure 4: Knight Moves Games Move Frequency
Distance

For these games, the ideal result of a distance
metric would be exactly d = 0 in all the scenar-
ios, since they are all the same game but devel-
oped with different ludemes. The table in the
figure 4 is just a section part of a full 20 by
20 matrix in which we can see that every re-
sult is very close to d = 0 (the larges result
was smaller than d = 0.01). As it was men-
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tioned, these games have different ludemes and
they were simulated with artificial intelligence
that follows these ludemes, thus in some games
the frequency of some moves, for example, the
captures, are slightly different to others.

4.4 Third Approach: N-Grams Co-
sine Similarity

As it was mentioned before the N-Grams are
used to capture sequences of moves in the games.
The algorithm was developed with the pos-
sibility of utilizing 2-Grams, 3-Grams and 5-
Grams. In the following table in the figure 5 it
is shown comparisons between different Knight
Moves games each one with 2, 3 and 5 grams to
identify the differences between them.

Figure 5: N-Grams with Knight Moves Games

In this table it is evidenced how even in very
similar games such as Knight Moves, there is a
direct relationship between the number of grams
and the distance among them. Since with more
grams the possible sequences have more varia-
tions resulting in larger distances. In the cases
where the distance is d = 0, it stays identical in-
dependently of the grams used in the algorithm.

To also evaluate this approach, it was tested
on the Draughts games with the 2, 3 and 5 -
grams. In figure 6 there are some of the results
comparing 6 games of this category.

We can see that, similarly to the Knight
Moves, there is an upper trend in the distance
between the games while the number of grams is
bigger.

Figure 6: N-Grams with Draughts Games

4.5 Fourth Approach: Game Con-
cepts

As mentioned, this approach is very similar to
the first approach with the difference that is
based on the game concepts instead of the move
concepts.

Figure 7: Game Concept Overlap in Knight
Moves Games

The table in Figure 7 shows the overlap of
game concepts between Knight Moves which as
also mentioned before in terms of moves is the
same game, but in terms of the ludeme and the
setting of the game can differ up to d = 0.3.

4.6 Fifth Approach: Combining N-
Grams and Game Concept

Finally, the last approach is a combination of the
sequences of moves captured by the N-Grams al-
gorithm and the game concepts captured by the
GameConcept algorithm. It is important to find
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the correct distribution of importance (weight)
for each part of the algorithm. The following ta-
bles will show some results of Benchmark Games
comparisons, these results are the product of
working with the 3-Grams algorithm. Each table
has its own balance of weights.

Figure 8: Benchmark Moves Games Weight: 0.3
3-Gram and 0.7 Game Concepts

In the first table, the 3-Grams receives 0.3 of
importance, while the game concepts 0.7. The
average distance in the full 18 Benchmark Games
matrix was d = 0.6043. The two closest pair in
the whole matrix were Taikyoku Shogi with Tai
Shogi with a d = 0.0555 and Backgamon with
Plakoto with a d = 0.0685. On the other end, the
furthest away pair of games in the whole Bench-
mark matrix were Taikyoku Shogi with Yavalath
with a d = 0.8433.

Figure 9: Benchmark Moves Games Weight: 0.5
3-Gram and 0.5 Game Concepts

The second table distributes the relevance in

the same proportion for both parts with 0.5 and
0.5. The average distance in the full 18 Bench-
mark Games matrix was d = 0.6353. The two
closest pair in the whole matrix were Taikyoku
Shogi with Tai Shogi with a d = 0.0515 and
Backgamon with Plakoto with a d = 0.0685. On
the other end, the furthest away pair of games
in the whole Benchmark matrix were Taikyoku
Shogi with Yavalath with a d = 0.8881.

Figure 10: Benchmark Moves Games Weight:
0.7 3-Gram and 0.3 Game Concepts

Finally, the third table gives the 3-grams 0.7
of importance while the game concepts part of
the algorithm receives 0.3. The average distance
in the full 18 Benchmark Games matrix was d =
0.6664. The two closest pair in the whole matrix
were Taikyoku Shogi with Tai Shogi with a d =
0.0327 and Backgamon with Plakoto with a d =
0.0344. On the other end, the furthest away pair
of games in the whole Benchmark matrix were
Taikyoku Shogi with Yavalath with a d = 0.9328.

The algorithm was also tested with the 20
Knight Moves games, the next table in the figure
11 shows the distance using the 3-Grams algo-
rithm and the distribution of weights as 0.3 for
the 3-Grams and 0.7 for the game concepts.

It is possible to see that, since in the Knight
Moves games the main difference is in the game
concepts, the result of evaluating them with
more weight in the game concepts than in the
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Figure 11: Knight Moves Games Weight: 0.3 3-
Grams and 0.7 Game Concepts

moves, makes them be farther apart.

Finally, in the figure 12, the algorithm was
tested for Draughts Games with 3-Grams and
the distribution of weights as 0.3 for the 3-Grams
and 0.7 for the game concepts.

Figure 12: Draughts Games Weight: 0.3 3-
Grams and 0.7 Game Concepts

The results are a bit larger than the ones given
by the second approach. The average for the
whole matrix including every Draught game was
a distance of d = 0.1486.

5 Discussion

5.1 Move Concept Approaches

Occurrence of Move Concepts First of all,
we did several experiments with our approaches
to measure the distance of the moves in order

to measure the similarity among games -which
is one of the main tasks of this research-. More-
over, after reviewing and evaluating the results
of every approach, the main objective was to im-
prove those results into more accurate and rea-
sonable results.

More specifically, our first approach was about
computing the overlap of the move concepts be-
tween Draughts games. By using the Occur-
rence of Move Concepts, as described in section
3.2.1, we observe the results of the first approach
method about the distance between Draught
games in the figure from section 5.1 1. For ex-
ample, the distance between Cage and Game of
Solomon, according to our results is d = 0.75,
as a consequence, their similarity is 0.25. This
happens because the Game of Solomon has fewer
move concepts than the cage game and we do not
consider any weights about the overlapping con-
cepts comparisons in this method. In general,
the first approach seems that is not that reliable
because only considers the appearance of move
concepts. In certain circumstances, games have
much more move concepts than others and this
gives dissimilar results from what we expected,
considering two games from the same category
that could be really close in reality.
Frequency and cosine similarity of the

Move Concepts The second approach focus ex-
clusively in the frequencies of the moves. As
it is shown in the results section in the figure
4, about the Knight Moves comparisons, this
approach works quite good with these kinds of
games, since all the results in the matrix are very
close to d = 0 and as it has been told before these
are the same game.

When the approach was tested on the
Draughts Games it was also possible to see good
improvements comparing to the first approach.
With the move frequency distance, the draughts
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games are way closer, as expected since they are
in the same category. The figure 3 shows that
the two furthest away games (which are also
the furthers away game in the full matrix) are
within a distance of d = 0.4001 compared to the
d = 0.7500 of the first approach. The average of
the full matrix was d = 0.1200.

Finally, when the approach was tested with
the Benchmark games, it is possible to see in
the figure 2 the results variate a lot depending
on the game, some game completely far apart
like Chess and Tic-Tac-Toe with distance d = 1,
some games with a mid-range distance such as
Chess and English Draughts with a distance of
d = 0.4531, and very close games like Hex and
Go with a distance of d = 0.0054. This last
result was important to realize that this algo-
rithm, although it showed the best results com-
pared to the first approach, it also had problems
with some specific games. One of these cases
was the Hex and Go comparison, these two be-
ing so similar is referred to the fact that the pos-
sible moves in these games are pretty much the
same, add one piece to the board on every player
turn, although the goal, strategies and structure
of the game are way different this approach only
focuses on the moves concepts.
N-Grams Cosine Similarity The third ap-

proach idea is to use N-Grams to capture the
sequences of moves in games and use them to
compare the distance between the games. The
implemented algorithm has the possibility to uti-
lize 2, 3 and 5 Grams to identify the similarity
between games. In our experimentation part, we
used the Knight games and the Draught Games,
as we observe in the figures 5 and 6 respectively.

According to the above results, it becomes
clear that there is a direct relationship between
the number of Grams and the distance, also in
very similar games. For instance, when the num-

ber of Grams is larger, the possible sequences of
moves have more variations and as a consequence
largest distances. In the case where the distance
is d = 0, stays constant independently of the
number of grams used. We conclude that there
is an ascending trend in the distance between the
games while the number o grams is bigger.

5.2 Game Concept Approaches

Game Concepts As it can be seen in the re-
sults of the Moves Frequency approach, there
are games that cannot be separated using exclu-
sively the move concepts, the Hex and Go exam-
ple. That is the reason an approach that focuses
only on game concepts was included. This algo-
rithm works very similarly to the first approach,
it takes the game concepts, saves the overlap
and gives a distance metric. In the results sec-
tion, the figure 7 was introduced to prove that
the Knight Moves Games have different concepts
even though they are all the same game. This
metric was used as a base to later combine it
with the move concepts metrics and find a bet-
ter approach.

5.3 Combination of N-Grams and
Game Concepts

After introducing the move concepts, sequences
of moves captured by the N-Grams algorithm
and the game concepts with the GameConcept
algorithm, the idea to combine them was born.
Additionally, the need to find the correct distri-
bution of the importance(weights) for every part
of the algorithm was rose.

According to the above mentioned, the main
disadvantage of the first approach was unreason-
able distance results for games from the same
category. Furthermore, using the move fre-
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quency algorithm and the algorithm of the N-
Gram sequences of moves, lead us to another re-
liability problem. This is clearly illustrated with
the results from the Hex and Go comparison (fig-
ure 2). Those games are completely different in
practice, but they are very similar to the previ-
ously mentioned moves metrics.

In the search of finding a way to separate
games like Hex and Go , an approach that com-
bines game concepts and the previous moves ap-
proaches was developed. This new approach
merges the concept approach and the n-grams,
as it was mentioned before, to find the correct
balance between them, the approach was tested
with three different proportions in the Bench-
mark because this group includes a bigger va-
riety of game categories. The first one gives
more weight (0.7) to the game concepts and less
weight (0.3) to the moves concepts part. The
second one with equal proportions (0.5 and 0.5)
and finally the third one with more importance
(0.7) to the moves than to the game concepts
(0.3). Using the Hex vs Go example as reference
we see in the tables in the figures 8, 9, 10, the
three results for this specific comparisons were
d = 0.4037, d = 0.2919 and d = 0.1801 respec-
tively. Looking at these three results, the one
that gives a more logical metric is the d = 0.4037
coming from the (0.3) n-gram and (0.7) because
since the game is very close in moving terms
and far apart in game concepts, a mid-range dis-
tance was expected. Also to verify that these
different weights do not change the expected re-
sult from other games we see how it affects mid
range games such as Chess and English Draughts
d = 0.4531 d = 0.4863 and d = 0.5191 and in
far apart games such as Chess and Tic-Tac-Toe.
The results for Chess versus English Draughts
were d = 0.4531, d = 0.4863 and d = 0.5191, in
all three scenarios they stayed in the mid-range

spectrum and in the Chess vs Tic-Tac-Toe the
given results were d = 0.8149, d = 0.8678 and
0.9207, they remain as far apart games.

After the analysis for these games, we per-
ceive the best weight combination between the
three was (0.3) n-grams and (0.7) game concepts.
However, the inconvenience for this algorithm is
evidenced in the Knight moves games. It has
been mentioned before that the algorithm should
look for a distance d = 0 in these specific games,
but since they do not share the same concepts,
by giving the largest importance to this part of
the algorithm the distance between those games
increases as it is shown in the figure 11.

6 Conclusion

In this research, different approaches were used
to measure the similarity between board games
in Ludii. The main focus involved the use of
move concepts, although in some of the ap-
proaches there was the use of game concepts as
well. In the last approach taken, a combina-
tion of move concepts and game concepts was
applied, by using N-Grams algorithm to capture
the sequence of moves and GameConcept algo-
rithm, respectively.

The research was conducted with the aim to
answer the following research questions:

• What does it mean for a board game to be
similar or different?

• Is it possible to provide sufficient insights to
measure the underlying difference between
two games, based on the observed move con-
cepts during the trials, combined with the
previously named game concepts?

• Are the designed move-based distance met-
rics faster and more reliable in contrast with
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the already existed distance metrics?

As for the first of these questions, what be-
came obvious through this project is that defin-
ing what makes two games similar or different is
a very complex issue that might not have an ob-
jective answer. This of course makes designing a
metric for comparing games a challenging task.
However, our approach is about the measure-
ment of the similarity, as claimed, by the move
based distances between games and with this ob-
jective, we can define the distance, hence the
similarity between them. Therefore, to answer
the first research question, we defined the move
and the game concepts to measure the underly-
ing differences between the two games. Accord-
ing to our approaches, if two games have over-
lapping move and game concepts then they tend
to be similar. Otherwise, if two games have over-
lapping move concepts(or game concepts) but
different game concepts(or move concepts) then
they tend to be different.

As mentioned above, the similarity between
games is a controversial problem to be answered.
Nevertheless, after combining our approaches
with frequency and N-grams we get a better
result, but still, there is a place for improve-
ment by adding more parameters, such as the
game concepts. As a consequence, instead of us-
ing a move based approach, a ”game concept”
approach could be more reliable. The previ-
ously mentioned could answer the second re-
search question of our project.

Finally, to answer the last research question,
the implemented distance metric for measuring
the similarity among games is fast. However, the
time-consuming process is the running of the tri-
als by using some AIs. By using a random AI
the speed is acceptable, but when we use other
AIs, which follow a strategy, to get more accu-

rate comparisons, the speed of the algorithm de-
creases significantly. Finally, as regards the reli-
ability compared to previous metrics, is compa-
rable in performance and better in some cases.

7 Future Work

Due to time constraints in this project, there re-
main possible adjustments, which are not yet im-
plemented. Firstly, we were not able to imple-
ment the promising similarity metric for n-grams
as proposed by Kondrak [9] and introduced ear-
lier in the report. Furthermore, we have pri-
marily focused on the cosine similarity measure,
hence a future task could involve testing and
comparing different measures. As the data is
very high dimensional and sparse, dimensional-
ity reduction might be applicable too.

Because the project was initially based solely
on moves, we only started thinking about game
concepts in the last phase of the project. At
that point, we discovered that it is possible some
differences between games are not captured by
move concepts on their own. Thus, we imple-
mented the approach based on boolean game
concepts. But, as we already know, there ex-
ist more complex non-boolean game concepts.
Moreover, some game concepts are way more sig-
nificant than others, i.e. ending conditions being
one of the most important concepts.

Throughout the whole project, the trials were
simulated using random agents only. This was
one of the constraint to the project. During the
experiments and their evaluation it became visi-
ble that some games differ from others by strate-
gic depth while playing them, therefore resulting
in sequences of moves with different frequencies.
Thus, we propose to utilize AI’s and random
players. We expect this would allow to capture
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more underlying differences, especially in strate-
gically rich games like Chess or Go.

If the designed metrics yield sensible results,
is it possible to answer further questions based
on the approach:

• Can games that are a subset of other games
be identified, i.e. whether any concept of
one game is also found in another one?

• Is it possible to construct a classifier for the
games based upon the results?
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A Appendix

Figure 13: MoveConcept Overlap with Draught Games
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Figure 14: Full Benchmark Games Frequency Moves
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Figure 15: Full Draught Games Frequency moves
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Figure 16: Full Knight Moves Frequency moves
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Figure 17: Full Knight Moves 2-grams
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Figure 18: Full Knight Moves 3-grams
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Figure 19: Full Knight Moves 5-grams
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Figure 20: Full Draught games 2-grams
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Figure 21: Full Draught games 3-grams
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Figure 22: Full Draught games 5-grams
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Figure 23: Full Knight Moves Game Concept Overlap
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Figure 24: Full Benchmark Games with balance 0.3 3-grams and 0.7 game concept
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Figure 25: Full Benchmark Games with balance 0.5 3-grams and 0.5 game concept
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Figure 26: Full Benchmark Games with balance 0.7 3-grams and 0.3 game concept
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Figure 27: Full Knight Moves Games with balance 0.3 3-grams and 0.7 game concept
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Figure 28: Full Draught Games with balance 0.3 3-grams and 0.7 game concept
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